Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Rev Endocr Metab Disord ; 23(2): 151-170, 2022 04.
Article in English | MEDLINE | ID: covidwho-1290217

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.


Subject(s)
Angiotensin-Converting Enzyme 2 , Angiotensins , COVID-19 , Angiotensin-Converting Enzyme 2/deficiency , COVID-19/physiopathology , Humans , Pandemics , Renin-Angiotensin System , SARS-CoV-2
2.
Pharmacol Rep ; 73(6): 1539-1550, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1281363

ABSTRACT

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/pathogenicity , Acute Lung Injury , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/therapeutic use , Humans , Hypertension/drug therapy , Spike Glycoprotein, Coronavirus/metabolism
3.
Cell Res ; 31(4): 395-403, 2021 04.
Article in English | MEDLINE | ID: covidwho-1091494

ABSTRACT

The upcoming flu season in the Northern Hemisphere merging with the current COVID-19 pandemic raises a potentially severe threat to public health. Through experimental coinfection with influenza A virus (IAV) and either pseudotyped or live SARS-CoV-2 virus, we found that IAV preinfection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Remarkably, in vivo, increased SARS-CoV-2 viral load and more severe lung damage were observed in mice coinfected with IAV. Moreover, such enhancement of SARS-CoV-2 infectivity was not observed with several other respiratory viruses, likely due to a unique feature of IAV to elevate ACE2 expression. This study illustrates that IAV has a unique ability to aggravate SARS-CoV-2 infection, and thus, prevention of IAV infection is of great significance during the COVID-19 pandemic.


Subject(s)
COVID-19/pathology , Coinfection/pathology , Influenza A virus/physiology , Orthomyxoviridae Infections/pathology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Cell Line , Coinfection/virology , Humans , Influenza A virus/isolation & purification , Lung/pathology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/virology , RNA, Guide, Kinetoplastida/metabolism , SARS-CoV-2/isolation & purification , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Severity of Illness Index , Viral Load , Virus Internalization
4.
Radiat Res ; 195(1): 1-24, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1021760

ABSTRACT

As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.


Subject(s)
COVID-19/physiopathology , Pandemics , Radiation Injuries/physiopathology , SARS-CoV-2/pathogenicity , Acute Lung Injury/etiology , Acute Lung Injury/physiopathology , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biomarkers/blood , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/physiopathology , COVID-19/epidemiology , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Hematologic Diseases/etiology , Hematologic Diseases/physiopathology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/etiology , Inflammation/physiopathology , Intercellular Signaling Peptides and Proteins/therapeutic use , Mesenchymal Stem Cell Transplantation , Mice , Organ Specificity , Pyroptosis , Radiation Injuries/blood , Radiation Injuries/drug therapy , Radiation Injuries/immunology , Receptors, Virus/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , SARS-CoV-2/isolation & purification , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/physiopathology , COVID-19 Drug Treatment
5.
Biochem Biophys Res Commun ; 533(4): 1276-1282, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-885206

ABSTRACT

BACKGROUND: The whole world was hit hard by the coronavirus disease-19 (COVID-19). Given that angiotensin I converting enzyme 2 (ACE2) is the viral entry molecule, understanding ACE2 has become a major focus of current COVID-19 research. ACE2 is highly expressed in the gut, but its role has not been fully understood and thus COVID-19 treatments intending to downregulate ACE2 level may cause untoward side effects. Gaining insight into the functions of ACE2 in gut homeostasis therefore merits closer examination, and is beneficial to find potential therapeutic alternatives for COVID-19. METHODS: We took advantage of Ace2 knockout out mice and isolated intestinal organoids to examine the role of ACE2 in intestinal stemness. Inflammatory bowel disease (IBD) mouse model was established by 4% dextran sodium sulfate. LGR5 and KI67 levels were quantitated to reflect the virtue of intestinal stem cells (ISCs). FITC-dextran 4 (FD-4) assay was used to assess intestinal barrier function. RESULTS: Western blotting identified the expression of ACE2 in colon, which was consistent with the results of immunofluorescence and RT-PCR. Moreover, Ace2-/- organoids showed decreased LRG5 and KI67 levels, and elevated calcium concentration. Furthermore, the permeability of ace2-/- organoids was markedly increased compared with ace2+/+ organoids. Collectively, ace2-/- mice were more susceptible than ace2+/+ mice to IBD, including earlier bloody stool, undermined intestinal architecture and more pronounced weight loss. CONCLUSIONS: Our data reveal that ACE2 contributes to the proliferation of intestinal stem cells and hence orchestrates the mucosal homeostasis.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Epithelium/metabolism , Angiotensin-Converting Enzyme 2/deficiency , Animals , Calcium/metabolism , Cell Membrane Permeability , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Mice, Inbred C57BL , Mice, Knockout , Organoids/metabolism , Stem Cells/cytology , Stem Cells/metabolism
6.
J Cosmet Dermatol ; 19(12): 3171-3176, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-806600

ABSTRACT

As of June 2020, the COVID-19 pandemic has totaled over 9 000 000 cases and 470 000 deaths globally (ref. 1). Emerging data from COVID-19 patients have suggested a clear role for oxidative stress in the pathogenesis of SARS-CoV-2, the pathogenic agent of COVID-19. Several comorbidities, including hypertension, diabetes, obesity, and aging, have been associated with an increase in baseline oxidative stress, likely explaining why such individuals at risk for poor outcomes with SARS-CoV-2 infection. Similarly, the concept of oxidative stress remains one of the best supported theories to explain the mechanism behind aging. Oxidative stress through both endogenous and exogenous sources has known deleterious effects in both aging and SARS-CoV-2 infection. Herein, we will review the role of oxidative stress as a key player in both aging and COVID-19 and highlight why some individuals may have better or poorer outcomes because of this. Additionally, we will discuss potential therapeutic pathways for effectively anti-aging as we take away from our learnings on COVID-19.


Subject(s)
Aging/physiology , COVID-19/physiopathology , Oxidative Stress , Angiotensin-Converting Enzyme 2/deficiency , Humans , Prognosis , Risk Factors , SARS-CoV-2
7.
Med Hypotheses ; 144: 110024, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-611696

ABSTRACT

SARS-CoV-2, the agent of COVID-19, shares a lineage with SARS-CoV-1, and a common fatal pulmonary profile but with striking differences in presentation, clinical course, and response to treatment. In contrast to SARS-CoV-1 (SARS), COVID-19 has presented as an often bi-phasic, multi-organ pathology, with a proclivity for severe disease in the elderly and those with hypertension, diabetes and cardiovascular disease. Whilst death is usually related to respiratory collapse, autopsy reveals multi-organ pathology. Chronic pulmonary disease is underrepresented in the group with severe COVID-19. A commonality of aberrant renin angiotensin system (RAS) is suggested in the at-risk group. The identification of angiotensin-converting-enzyme 2 (ACE2) as the receptor allowing viral entry to cells precipitated our interest in the role of ACE2 in COVID-19 pathogenesis. We propose that COVID-19 is a viral multisystem disease, with dominant vascular pathology, mediated by global reduction in ACE2 function, pronounced in disease conditions with RAS bias toward angiotensin-converting-enzyme (ACE) over ACE2. It is further complicated by organ specific pathology related to loss of ACE2 expressing cells particularly affecting the endothelium, alveolus, glomerulus and cardiac microvasculature. The possible upregulation in ACE2 receptor expression may predispose individuals with aberrant RAS status to higher viral load on infection and relatively more cell loss. Relative ACE2 deficiency leads to enhanced and protracted tissue, and vessel exposure to angiotensin II, characterised by vasoconstriction, enhanced thrombosis, cell proliferation and recruitment, increased tissue permeability, and cytokine production (including IL-6) resulting in inflammation. Additionally, there is a profound loss of the "protective" angiotensin (1-7), a vasodilator with anti-inflammatory, anti-thrombotic, antiproliferative, antifibrotic, anti-arrhythmic, and antioxidant activity. Our model predicts global vascular insult related to direct endothelial cell damage, vasoconstriction and thrombosis with a disease specific cytokine profile related to angiotensin II rather than "cytokine storm". Our proposed mechanism of lung injury provides an explanation for early hypoxia without reduction in lung compliance and suggests a need for revision of treatment protocols to address vasoconstriction, thromboprophylaxis, and to minimize additional small airways and alveolar trauma via ventilation choice. Our model predicts long term sequelae of scarring/fibrosis in vessels, lungs, renal and cardiac tissue with protracted illness in at-risk individuals. It is hoped that our model stimulates review of current diagnostic and therapeutic intervention protocols, particularly with respect to early anticoagulation, vasodilatation and revision of ventilatory support choices.


Subject(s)
Angiotensin-Converting Enzyme 2/deficiency , COVID-19/physiopathology , Angiotensin I , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Anticoagulants/therapeutic use , COVID-19/complications , Cardiovascular Diseases/complications , Cardiovascular Diseases/physiopathology , Humans , Hypertension/complications , Hypertension/physiopathology , Models, Theoretical , Peptide Fragments , Renin-Angiotensin System , Respiration , Risk Factors , Venous Thromboembolism/complications , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL